Pionero v4.0 (FINAL)

With this program you will be able to update the Eeprom and firmware contents from your Pioneer decoder and some Pace decoders. Please, read the entire document before doing anything. A simple mistake can damage one of the ports or the flash memory.

SYSTEM REQUIEREMENTS:

1- Windows 95, 98, ME, NT, 2000

2- One serial port.

3- One parallel port in ECP mode.

4- 1024x768 Screen resolution

WHAT’S NEW:
Pionero v4.0 (FINAL)

- Added an eeprom writing function through the Jtag interface thanks again to pio’s code.

- Now it’s possible to change all the Status bits from the Tuning section without having to edit every
 channel.

- Improved writing function in Sanyo ICs. Now you can erase blocks or sectors without problems.

- Support for the new Symbol Rates found in Dynamit’s v4.31 firmware.

- Minor bug fixes.

Pionero v4.0 (BETA 3)

- Added an eeprom reading function through the Jtag interface thanks to Pio’s code.

- Now it’s possible to select the encryption system of every channel from the channels table and it’s also
 possible to configure an unknown bit in that table.

- Added an option to completely erase a Flash IC. BE CAREFUL !!!!!!

- Support for some PACE decoders.

- New section to edit some parameters stored in the eeprom.

- Bug fixes.

Pionero v4.0 (BETA 2)

- Configuration of all Flash ICs depending on the decoder model and board.

- Now you can generate the firmware checksum of BCT15xx and BCT16xx automatically.

- The number of bits in the start delay (WaitStart) can be changed. This improves notably all the
 transmissions through the Jtag interface.

- More security measures have been added to the Jtag code to avoid hung-ups with defective Jtag
 interfaces.

- Added a “Cut” button in the Tuning section.

- Now Pionero recognizes channels and transponders tables mixed with upgrades.

- All INI and DOC files are now inside subdirectories.

- New GUI translation : Arabic.

- Bug fixes.

Pionero v4.0 (BETA 1)

- Flash ICs writing option implemented :

- Configuration from INI files for BCT14xx, BCT15xx y BCT16xx.

- Automatic verification after writing.

- Flash contents check before writing to save time in case they are the same.

- Automatic block erasure when needed.

- Added a small LPT port check for the decoder.

- Improved Jtag writing and reading speed.

- Now the speed indicator show the average speed and not the instantaneous speed.

- New manual translation : Russian.

- Bug fixes.

Pionero v3.2.1

- Added eeprom’s partial reading and writing functions from 0x000 to 0x0AF.

- Now it’s possible to change the maximum number of channels and transponders.

- New option to add more channels and transponders from a second file.

- Resizing window bug fixed.

Pionero v3.2

- New section to see frozen images from the decoder:

- The images can be saved in BMP or JPEG formats.

- Supported image sizes: 352x576, 528x576, 544x576, 704x576 and 720x576.

- Supported image formats: 4:3 and 16:9

- Added new functions in the “Tuning” section:

- Copy and paste channels and transponders.

- Move and erase transponders.

- Keyboard shortcuts for those who like to use the keyboard.

- Added new indicators of speed and remaining time in every transmission.

- Now you can resize more windows in the “Tuning” section.

- New GUI translation: Swedish.

- The code has been reorganized and every function has been commented.

- Bug fixes.

Pionero v3.1

- Support for DiSEqC in the transponders table.

- Substitution of the status byte for the number of channels in that transponder (I didn’t know its meaning
 till now).

- Support for the transponders tables in Dynamit’s firmware. Now all its values, even those from estrange
 transponders, are stored correctly.

- Support for C Band transponders.

- Now all the values of the Symbol Rate can be configured with INI files. This way the firmware developers
 will be able to change the ordering of the channels without having to modify the editor each time they
 add or remove a Symbol Rate value.

- Added an option to save the channels and transponders tables as text or html files.

- Slightly improved Jtag functions. In theory Pionero should have no problems with fast computers and it
 won’t freeze with defective Jtag interfaces. It will simply inform of an error and the address where it
 happened.

- Much faster and efficient INI file handling. You’ll notice this when you start Pionero or when you change
 the GUI language.

- Small improvements in the graphical interface. I hope that the tuning section will be easier to use. Now
 it’s possible to change the window size and every time you select a channel you’ll see the transponder
 information to the left.

- Added instructions to send the channels list and the eeprom to BCT13xx decoders.

Pionero v3.0

- Channel and transponder tables editing :

- It's possible to edit the tables from Flash memory or RAM.

- Editor fully integrated with the rest of the other functions.

- You can even change the TCS or TPT positions, the way the

 Symbol Rate is stored and the L.O. frequencies.

- And of course, you can also change all the settings of every

 channel or transponder.

- Now its possible to write in RAM through the JTag interface.

- GGF1367 eeprom file format now supported.

- New GUI translations : Russian and Italian.

- New manual translations : French, Polish and Italian.

- New Logo.

- Minor bug fixes.

Pionero v2.0

- Firmware update now possible through the parallel and serial cables

 for bct14xx and compatible decoder models.

- JTag reading function implemented.

- CPU Code reading through JTag interface.

- Terminal section added.

- Configuration section added.

- All the settings are now stored in INI files.

- GUI translations now possible by using INI files.

- GUI in Spanish, English, Catalan, Polish and French.

- Now manuals in Spanish and English.

- Bug fixes.

Pionero v1.1

- Hexadecimal editor for the EEPROM

- Binary Eeprom file format now supported

- First manual just in Spanish.

- Bug fixes.

Pionero v1.0

- EEPROM send, receive, erase and verify functions implemented.

- GUI only in Spanish.

INSTRUCTIONS :

Before explaining how Pionero works I’ll have to clarify some aspects of Pioneer decoders.

This devices have all it’s necessary to be repaired by the technical service using of a serial port, parallel port, Jtag, I2C…

Pionero only uses the serial, parallel and jtag ports. With them you can reach the eeprom and firmware contents without problems.

Pionero needs a couple of cables (serial and parallel extension cords) to communicate with the decoder. Each pin from one end must be connected to the pin of the same number at the other end (1->1, 2->2, etc...). Having said this, it’s clear that the parallel cables used to connect two computers don’t work with Pionero. In addition to this, we’ll have to activate a service mode in the decoder

Before doing anything you’ll have to check that :

1. The cables are not damaged.

2. The serial port is configured with a baud rate of 9600 bauds or more in the control panel.

3. The parallel port is in ECP mode in the BIOS.

4. None of the ports must be used by any other program or driver. In some occasions, some drivers block the use of ports and Pionero cannot communicate with the decoder.
Recommendations :

1. It would be prudent to fix interrupt-sharing conflicts before using this program.

2. If you have any cooler from an old computer, attach it to the decoder’s CPU. It gets very hot sometimes and it’s never a bad idea to cool it. In my case, it’s enough with a 486 cooler without the fan.

3. Always screw the parallel and serial connectors!

4. Although Pionero can work with an screen resolution of 800x600, it’s not recommended because you won’t see part of the Configuration and Screenshot sections. It’ better to have a 1024x1768 (real or virtual) screen resolution.

If your operating system is Windows 2000, NT or XP, then you’ll have to copy “gwiopm.sys” to the same folder where “Pionero.exe” is located, if you don’t do this, the parallel port cannot be used. If you have any other Windows version you can delete that file.

As you can see, there are eight sections in this program: Eeprom, Firmware (Parallel+Serial), Firmware (Jtag), Terminal, Tuning, Screenshot, Configuration and About. I don’t think I have to explain the last one, so I’ll focus on the others ;-)

EEPROM SECTION :

A lot of information is stored in your decoder’s eeprom. Inside this data there is the serial number, the stereo settings, etc…

We still don’t know the meaning of every byte but I think that this program will be very helpful to experiment and investigate this issue.

In this section I make no distinction between decoder models because all of the have the same way to upgrade its eeprom.

First of all, connect the computer and the decoder with the serial cable. Then remove the decoder’s metallic cover and turn the computer on. At this moment you can see all the decoder’s components, and between all those components there is a point called K2002 in the BCT14xx, BCT15xx and BCT16xx, or K2501 in the BCT13xx, that looks like a nail.

Before turning on the decoder you must use any cable to connect the K2002 or K2501 point to ground (the metallic box where you connect the antenna is a good place).

If you connected the K2002 point, then you’ll see “DL1” on the display and after a few seconds you’ll see “DL1o”. At this moment you can remove the cable connecting K2002 to ground and you are ready to use the eeprom section of Pionero.

If you connected the K2501 point, then you have to turn the decoder on with the general switch and then you have to press the ON button in the remote control. Some numbers will be shown on the decoder’s display and after a few seconds you’ll see 88:88. At this moment you can remove the cable connecting the K2501 point to ground and you are ready to use the eeprom section of Pionero.
It’s also possible to use the eeprom functions conecting the K6003 point in BCT14xx decoders or the K7003 in BCT15xx and BCT16xx decoders. The method is the same than the one explained with the K2501 point of the BCT13xx decoders.

The basic functionality is this :

1) Receiving the Eeprom’s data :

a) Click on "Receive" and the Eeprom’s contents will appear on the table next to the log of what happened. Depending on the selected length, you’ll receive all the eeprom, the 0x000 to 0x0AF address range or just one line. Remember that in some decoder models, after entering in service mode, the eeprom is erased but in other decoder models it’s intact.

b) Click on "Save as..." and write the file’s name where you wish to store the data.

2) Modifying the Eeprom’s data :

a) If you click over the table you’ll be able to edit every byte individually but, in addition to this, if you click on “Read File...” you can load eeprom data from other files. It doesn’t matter if it is the whole eeprom data or just a few lines (addresses).

3) Sending the Eeprom data :

a) Click on “Send” to send the table data to the decoder’s eeprom. Depending on the selected length, you’ll send all the eeprom, the 0x000 to 0x0AF address range or just one line.

b) If you configured correctly the serial port you’ll see some text lines in the log window.

c) At the end, if there are no errors, Pionero will inform you if it was written correctly or not.

d) If you just want to send a few bytes, there’s a button called “Send Slcted Row”. If you click on it, Pionero will send the last edited line (16 bytes).

4) Eeprom erasure :

a) Clicking on "Erase" you’ll only set the table contents to FF.

b) If you want to erase the eeprom you’ll have to send those values by clicking on “Send”.

5) Verifying the Eeprom :

a) Click on "Verify" to compare the Eeprom data with the table contents. Depending on the selected length, you’ll verify all the eeprom, the 0x000 to 0x0AF address range or just one line.

b) If you configured correctly the serial port you’ll see some text lines in the log window letting you know if the data is the same.

To do all these functions all you need is to connect the decoder to the PC with a serial cable but you can also read and write the eeprom through the Jtag interface using the table in this section as the origin or destination of what you write or read, respectively.

Remember that you have three options to read and save eeprom files corresponding to three eeprom file formats that Pionero can handle :

1- Pionero’s Text File : Original format of TTSherpa in his method to update the eeprom with HyperTerminal. This files have text lines with the commands that the decoder understand “%EE=...”. this commands are explained in the Terminal section.

2- GGF1367’s Text File : Format of the GGF1367 and GGF1351 programs. It consists in text lines with the eeprom contents in hexadecimal notation

3- Binary File : Format used in some programs like ICPROG. It’s only useful if you have the eeprom unsoldered from the main board.

From all these formats the most reliable is the first because each line have the address where those values should be located and it also have a checksum to prevent errors.
To save the log, right click on the log window and then click on “Save as...”.

Dynamit and other people sent me some information about the meaning of data inside the eeprom. These are some interesting eeprom’s values :

	Position
	Meaning
	Options

	0x02 – 0x04
	Country
	ESP, ITA, NLD, POL, GBR...

	0x07 – 0x08
	Provider ID
	000C, 0019, 0004 ...

	0x09
	Software’s version
	

	0x0B – 0x20
	Satellite 1 name
	ASTRA, HOTBIRD

	0x021
	Band
	00 – Ku, 01 – C ???

	0x022
	Antenna number
	00 – ant.1, 01 – ant.2 ???

	0x025 – 0x026
	Frequency
	

	0x027
	Symbol Rate
	(Note 1)

	0x028
	FEC
	(Note 1)

	0x029
	Polarity
	00 – V, 01 – H

	0x02A
	22KHz
	00 – Off, 01 - On

	0x02E – 0x02F
	LNB L.O. Freq.
	2968 – 10600, 2616 - 9750

	0x030 – 0x045
	Satellite 2 name
	OVERIGE, OTROS, ALTRI...

	0x046
	Band
	00 – Ku, 01 – C ???

	0x047
	Antenna number
	00 – ant.1, 01 – ant.2 ???

	0x04A – 0x04B
	Frequency
	

	0x04C
	Symbol Rate
	(Note 1)

	0x04D
	FEC
	(Note 1)

	0x04E
	Polarity
	00 – V, 01 – H

	0x04F
	22KHz
	00 – Off, 01 - On

	0x053 – 0x054
	LNB L.O. Freq.
	2968 – 10600, 2616 - 9750

	0x055 – 0x056
	Provider ID to store channels
	000C, 0019, 0004... (Note 2)

	0x057 – 0x059
	Secondary audio language
	ita, esl, dut, eng, pol...

	0x05B – 0x05D
	Primary audio language
	ita, esl, dut, eng, pol...

	0x05E – 0x060
	Subtitles Language
	ita, esl, dut, eng, pol...

	0x065 – 0x066
	Last seen channel
	

	0x067 – 0x068
	Checksum of the position 0x001
	(Note 3)

	0x069 – 0x06A
	Checksum of the country
	(Note 3)

	0x06B – 0x06C
	Checksum of the position 0x005
	(Note 3)

	0x06D – 0x06E
	Checksum of the Provider ID
	(Note 3)

	0x079 – 0x07A
	Checksum of the Provider ID to store channels
	(Note 3)

	0x07B – 0x07C
	Checksum of the secondary audio language
	(Note 3)

	0x07D
	Checksum of the position 0x05A
	(Note 3)

	0x07F – 0x080
	Checksum of the primary audio language
	(Note 3)

	0x083 – 0x084
	Checksum of the position 0x061
	(Note 3)

	0x085 – 0x086
	Checksum of the position 0x062
	(Note 3)

	0x087 – 0x088
	Checksum of the position 0x063
	(Note 3)

	0x089 – 0x08A
	Checksum of the position 0x064
	(Note 3)

	0x08B – 0x08C
	Checksum of the Last seen channel
	(Note 3)

	0x08E – 0x09B
	Active sections code
	(Note 4)

	0x09C – 0x0A9
	Copy of the active sections code
	(Note 4)

	0x406
	Color system
	00 = PAL, FF = Secam

	0x418
	Decoder’s boot mode
	00 = Standby, FF = Turned on

	0x0DE – 0x0E5
	EPG
	(Note 5)

	0x733 – 0x734
	Diseqc
	0000 = On, FFFF = Off

	0x7D0 – 0x7D1
	Country code
	

	0x7D2 – 0x7DD
	Decoder’s serial number
	

Notes :

1- I think here you’ll find the same kind of values that the one’s found inside the transponder’s table to store the Symbol Rate and FEC.

2- If you write FFFF instead a provider id, you’ll be able to store channels with any ordering.

3- All the checksums are calculated the same way: You have to make a xor of every byte and the result will be the checksum’s second byte. The checksum’s first byte will be the subtraction of FF and the first checksum’s byte. For example, if you want to calculate the checksum of these three bytes 47, 42 and 52, then you have to make the following operation : 47 xor 42 xor 52 = 57. This will be the second value of the checksum. The first one will be calculated this way FF – 57 = A8.

	Section
	BCT13xx
	BCT14xx
	BCT15xx
	BCT16xx

	0
	FFF90000
	60000000
	7FE00000
	7FF80000

	1
	FFFA0000
	60010000
	7FE10000
	7FF90000

	2
	FFFB0000
	60020000
	7FE20000
	7FFA0000

	3
	FFFC0000
	60030000
	7FE30000
	7FFB0000

	...
	...
	...
	...
	...

4- The channels and transponders tables are stored in certain positions of the flash memory. These positions are not always the same and in some occasions they change, maybe to make some room to the patches received via satellite. Each one of these positions are called “sections” and they can have these values : 00000, 10000, 20000, 30000, 40000, 50000, etc...
These positions point to different addresses depending on the decoder model :

Depending on the different combinations of the sections used (one for the channels table and another for the transponders table) we’ll have a different code in these positions. The codes for bct14xx are these :
a) 00800080000000000000000002A7 : Sections 0 and 1.
b) 00800080000000000000000001A4 : Sections 0 and 2.
c) 00800080000000000000000000A5 : Sections 1 and 2.
For BCT15xx decoder these are the codes :
a) 00800080000000000000000002A7 : Sections 1 and 2.
b) 00800080000000000000000001A4 : Sections 1 and 3.
c) 00800080000000000000000000A5 : Sections 2 and 3.
These codes change when there are patches, upgrades or mailboxes next to the TCS and TPT.

5- Depending on the values in these positions, the Pilot and EPG keys will work with the information from different providers :
a) 3B00060000000000 : Spain
b) 3F50000000000000 : France
c) 3B00000060000000 : Holland
d) 3B00000600000000 : Italy
e) 3B00000000600000 : Poland
f) 3F00060660060000 : All of them
g) 3B00000000000000 : Minimum level (used by some firmwares)
h) 0000000000000000 : None

As you can see, there are some checksums of positions that we know nothing about. In addition to this, we know that there is more data stored in the eeprom but we don’t know where and how it is stored.

Most of this information can be edited easily in the “Interpreted Data” tab, inside the eeprom section.

If you have reliable information about some other eeprom position, send it to me by e-mail and I’ll add it to the “Interpreted Data” section.

FIRMWARE (Parallel + Serial) SECTION :

You’ll have to be very careful in this section if you don’t want to send the decoder to the technical service. Each model family has the flash memory organized in a different way and an error in the memory address could be fatal.

Using this section you can do this :

1- In BCT14xx and compatibles you can upgrade the firmware and send the channels list.

2- In BCT13xx and compatibles you can only send the channels list.

However, everyone should read this section because here’s explained how to recognize the different decoder families.

Inside the decoder there are two integrated circuits of flash memory. Each one of them store different information and have different addresses. Besides this, you have to know the service modes of your decoder because, depending on the service mode, you can access a different memory address range.

· BCT12xx AND COMPATIBLES: The models BCT1210, BCT1220T and others belong to this family and they have “BNP-1295-...” printed on their boards. These models are not very common in Spain and we just know that the Jtag port can’t be used because their CPU doesn’t have a DCU.

· BCT13xx AND COMPATIBLES : The models BCT1310, BCT1330, DBR-S100I and others belong to this family and all of them have “BNP-1310-...” printed on their boards. These models are not very common in Spain and their firmware is difficult to find but Pionero is based on the program that the technical service use, so there should not be any problem to update the firmware. Right now we know how to send the channels list and the eeprom, however, we still don’t know how to update the firmware or what point should be grounded to use the PL command. If your decoder can’t boot after a failed upgrade, you can fix it unsoldering the C16 eeprom and replacing it with an erased 24LC16 eeprom or erasing the channel list memory positions.

These are the steps to send the channel list :

a. Connect the serial and parallel port cables to the decoder.

b. Activate the service mode 2 by grounding the K2501 point and then turn the decoder on from the general switch.

c. Turn on the decoder from the remote.

d. Some numbers will be shown on the decoder’s display and after a few seconds you’ll see 88:88.

e. Then remove the cable used to ground K2501. The decoder is now in service mode 2.

f. Select the FL command

g. Select FFF90000 in the address combo box. CAUTION: If you choose the wrong address, the decoder will no longer boot !
h. Uncheck “Phase 1 and 2”.

i. If you want to send the channel list from a file, then you have to check “File” inside the “Use” section. However, if you want to send the channel list from the “Tuning” tab, then you have to check “FLASH channels table”.
j. Click on the “Send” button.

k. If you selected “File”, then Pionero will ask you to open the file called “canal.rsc”.

l. Pionero will send that file and all the steps will be recorded in the log window.

m. Once this is finished, Pionero will inform you about the unsuccessful firmware update (it doesn’t matter if it is unsuccessful. This is the usual result after sending the channel list)

n. Enter in the Eeprom section of Pionero.

o. Click on “Read File...” and select the file called “eeprom.txt”

p. Click on “Send”

q. When the eeprom is completely sent, then you can turn the decoder off and disconnect the cables. Later, when you turn the decoder on you will not have to scan for new channels. The decoder will use the channel list that you sent.
Remember that it’s necessary to have the same active sections in the eeprom (see eeprom section) and in the channel list or your decoder will ask you to store the channels again. Moreover, some firmwares store the channels and transponders tables in a slightly different way. If you upgrade the firmware and those tables are stored differently, your decoder may ask you to store the channels again.

	BCT13xx and compatibles
	Point
	Command
	Address
	Contents
	Files

	Service Mode 1
	???
	PL
	FFF82000
	???
	PATCH.RSC

	Service Mode 2
	K2501
	FL
	FFF90000
	Channel list
	CANAL.RSC

· BCT1430 AND COMPATIBLES : The models BCT1430, BCT1420, BCT1410, DBR-S100NL2, DBR-S200NL, TS4, DBR-S100I2, some DBR-S200F and some other models that I don’t remember belong to this family. All of them have “BNP1323-...” and in some cases “BNP-1337-...” printed on their boards. If you just want to upgrade the firmware, then it is not necessary to send the channel list. All you have to do is sending the “appli_p.rcu” file.
To upgrade the interactive software you have to follow this steps :

b. Connect the serial and parallel port cables to the decoder.

c. Activate the service mode 1 by grounding the K2002 point and then turn the decoder on.

d. Select the DL command.

e. Select 7FE00000 in the address combo box.

f. Check “Phase 1 and 2”.

g. Check “File” in the “use” section.

h. Click on the “Send” button.

i. Select the file called “appli_p.rcu”.

j. Pionero will send that file and all the steps will be recorded in the log window.

k. Once this is finished, Pionero will inform you about the successful (or unsuccessful) firmware update.

l. Turn the decoder off and then remove the cables.

These are the steps to send the channel list :

a. Connect the serial and parallel port cables to the decoder.

b. Activate the service mode 2 by grounding the K6003 point and then turn the decoder on from the general switch.

c. Turn on the decoder from the remote.

d. Some numbers will be shown on the decoder’s display and after a few seconds you’ll see 88:88.

e. Then remove the cable used to ground K6003. The decoder is now in service mode 2.

f. Select the FL command

g. Select 60000000 in the address combo box

h. Uncheck “Phase 1 and 2”.

i. If you want to send the channel list from a file, then you have to check “File” inside the “Use” section. However, if you want to send the channel list from the “Tuning” tab, then you have to check “FLASH channels table”.
j. Click on the “Send” button.

k. If you selected “File”, then Pionero will ask you to open the file called “canal_p.rcu”.

l. Pionero will send that file and all the steps will be recorded in the log window.

m. Once this is finished, Pionero will inform you about the unsuccessful firmware update (it doesn’t matter if it is unsuccessful. This is the usual result after sending the channel list)

n. Enter in the Eeprom section of Pionero.

o. Click on “Read File...” and select the file called “eeprom.txt”

p. Click on “Send”

q. When the eeprom is completely sent, then you can turn the decoder off and disconnect the cables. Later, when you turn the decoder on you will not have to scan for new channels. The decoder will use the channel list that you sent.

Remember that it’s necessary to have the same active sections in the eeprom (see eeprom section) and in the channel list or your decoder will ask you to store the channels again. Moreover, some firmwares store the channels and transponders tables in a slightly different way. If you upgrade the firmware and those tables are stored differently, your decoder may ask you to store the channels again.

Normally there’s no problem upgrading the firmware by sending “appli_p.rcu” only, but with the DBR-S200F decoders you need to send the “eeprom.txt” file from the eeprom section. If you don’t do this, you’ll see “ERR” on the decoder’s display. To fix this problem, all you have to do is to send the “eeprom.txt” file.

In the following table you’ll find all it’s necessary to update these models.

	BCT14xx and compatibles
	Point
	Command
	Address
	Contents
	Files

	Service Mode 1
	K2002
	DL
	7FE00000
	Interactive Software
	APPLI_P.RCU

	Service Mode 2
	K6003
	FL
	60000000
	Channel list
	CANAL_P.RCU

· BCT15xx AND COMPATIBLES : The models BCT1530, DBR-S110I, DBR-S110NL, DBR-S210F and some DBR-S200F belong to this family. All of them have “BNP1354-...” printed on their boards. We still don’t know how to upgrade their firmware through the parallel and serial cables successfully and, so far, we only get “Ad E” on the display (Application Download Error). Then, if we turn the decoder on, the original firmware will be kept untouched. To upgrade the firmware of these decoders you have to use the “Firmware (Jtag)” section of Pionero. CAUTION : The BCT16xx models also have a “BNP1354-...” board but they have different memory addresses and a different firmware.

	BCT15xx and compatibles
	Point
	Command
	Address
	Contents
	Files

	Service Mode 1
	K2002
	DL
	7FE00000
	Channel list
	???

	Service Mode 2
	K7003
	FL
	60000000
	Interactive Software
	???

· BCT16xx AND COMPATIBLES: These are the new decoder models and the BCT1610 belong to this family. They have the same board than the BCT15xx (BNP-1354-...) and the same CPU (STi5512) but the memory addresses are changed, so the firmware is different. We still don’t know how to upgrade their firmware through the parallel and serial cables successfully. To upgrade the firmware of these decoders you have to use the “Firmware (Jtag)” section of Pionero.

	BCT16xx and compatibles
	Point
	Command
	Address
	Contents
	Files

	Service Mode 1
	K2002
	???
	7FE00000
	Interactive Software
	???

	Service Mode 2
	K7003
	???
	7FF80000
	Channel list
	???

If you get some file to update the firmware you can identify its contents by reading the first four characters with an hexadecimal editor. If those characters are “boot” it means that the file is the Interactive software.

The “Phase 1 and 2” option is used when a confirmation is required by the decoder before sending the verification command. In the case of the DBR-S100NL2 this option must be checked to send the firmware to the 7FE00000 address. However, when you want to send the channel list to the 60000000 address, this option must be unchecked.

The “Show Progress” option is used to see the progress bar growing or not. It accelerates the transmission if you uncheck this checkbox.

The button called “Check LPT” is used to check the status of the decoder’s LPT port. This function doesn’t work in my DBR-S100NL2 but it should work on BCT13xx decoders.

Only when you are COMPLETELY SURE about the address and the command you can click on the “Send” Button and choose the firmware file of your decoder.

Unlike other programs, Pionero does not need any DAT file nor update the 7D0 eeprom address. You simply choose the RCU file and Pionero will do all it’s necessary to send it.

In the DAT files you can only find the RCU file length in hexadecimal next to the checksum and Pionero calculates those two values before sending any file.

NOTE : It is VERY IMPORTANT to plug and unplug the cables when the decoder is TURNED OFF. If you don’t do this, the serial and parallel ports of your decoder could be damaged!
It is highly recommended to have a copy of your original firmware. You can get it with the next section called: Firmware (Jtag)

FIRMWARE (JTag) SECTION :

I have added this section to be independent from other programs that extract the firmware from your decoder.

With this section you can upgrade the firmware and the channel list (FLASH or RAM) of these decoders :

1- BCT14xx

2- BCT15xx

3- BCT16xx

BCT12xx and BCT13xx can’t be upgraded with this section because their CPU don’t have a DCU (Diagnostics Controller Unit).

BCT14xx decoders can also be upgraded with this section but it’s recommended to use the “Firmware (Parallel + Serial)” section because its faster, safer and easier.

You can also upgrade other decoders like the Pace CP3000P through the Jtag interface.

Before giving a step by step guide to upgrade the firmware, send a channels list or change the eeprom’s contents, it would be better if you read the following sections where you can find what you’re exactly doing and how to avoid problems with your decoder.

How to build a Jtag interface:

In our decoder there’s a zone inside the board called CN2002 where you can connect a jtag interface. You’ll have to connect those 20 points to a jtag interface and to the computer. The Jtag interface limits the parallel port tension to 3.3v. This way you will not burn your decoder because of excessive tension.

As Tomas Vlad explains in his programs, this interface can be built with just a few leds, resistors and a diode, but it is highly recommended to use an integrated circuit called 74HC244 powered directly from the decoder’s board..

This is the interface with leds, resistors and a diode :

[image: image1.png]TMS

Do R1

X1 — py DI AL307
14 ~) 1 100 M CN2002
15 2 1 2
16 3 o |Ri| pyy 02 AL36Z 312 o4
17 4 L 1 TDI 12 % ¢
18 5 lea ha Z1S ST
19 6 D2 R3 9] 10
20 7 — pyy 03 AL36Z 7l P BV
21 8 — 1 1315 ol
22 s lea A 1515 olte
23 10 Select R4 TDO | notTRST 1715 ol 18
24 11 —i 1915 o} 20
25 12 — |

B 33 JTAG

— D3 ,Ril g D4 AL367
CENTRONICS o0 ™
D5

1A

/ KD522

D1, D2, D3 and D4 are 5mm yellow leds. D5 is a 1N4148 or 1N4007 diode.

R1, R2, R3 and R5 are 100 ohm resistors. R4 is a 33 ohm resistor

This is the interface with the 74HC244 :

[image: image2.png]20-Pin Plug Connections

to IRD
VCC - 33 Volt 5o
vee 74HC244 oo
20T
16 Vee i1y
25-Pin Male Header 26 GND ™3 gNp
Connections 1A1 1118
fie
rore vgc v;c Vee Ve 142 i
1A3 1va 14
' CECHCEL]
8 1ne 1v4 [12
—2 ;z 1 2a1 a1 (9 w2 2o
2wl 4 202 av2 {7 L
[N L/ - 151 23 2v3 (5w 18—
=5l e 17| opa 2va |3 (1) 19 —
20
—13 [0/] I]
Notes: GND
18-25
B (1) Al series resistors are 100 Q.

aND

() Allpull-up resistors are 22K~ Q.

It is highly recommended to use a ribbon cable (not longer than 30cm) to connect the jtag interface to the decoder.

To check the correct functionality of the jtag interface you can use the “CPU code” button. After you click on it you’ll see the decoder CPU IDCODE on the log window. If it is not recognized or it’s not always the same, it’s a clear sign that the jtag interface does not work correctly. There could be a defective soldering or a diode (or led) could be polarized incorrectly.

As a definitive test of reliability, read all the original firmware of your decoder (2Mb). If you don’t have any errors that means that you Jtag interface is working correctly.

How to use the Jtag interface:
Once you have built the jtag interface, connect it to the CN2002 and the parallel port.

It’s not necessary to be in service mode to use the Jtag interface, but it’s recommended because the process will be faster. The methods to enter in service mode are described in the eeprom section of this document.

Only after you connect the Jtag interface to the decoder and to your computer, you can turn your decoder on. If you connect it with the decoder turned on, you could damage one of the ports.

How to read with the Jtag interface:

Once you are sure about your jtag interface, you can proceed to select a starting address and the length you want to read.

The data can be directed to a file, to the Screenshot section or to the Tuning section. To do this, you just have to check “File”, “Eeprom”, “RAM channel table”, FLASH channel table” or “Screenshot” in the “Use” box.

Later you can click on “Receive” and you’ll see how Pionero starts to read the contents of the selected address.

If you selected “Eeprom” Pionero will read the actual content’s of the eeprom and it’ll send them to the table in the eeprom section. Remember that in some decoders the eeprom is erased automatically after entering in service mode, so if you want to read the eeprom completely you’ll have to try it with the decoder turned on with the remote control. To do that you’ll have to use a trap address with 65Kb free (filled with FFs or ceros)

When you select “Eeprom” the “Address” and “Length” fields are used like this:

· Address: You’ll have to type the internal eeprom address from where you want to red. In Pioneer decoders the eeprom is a 24C16, so the valid address range is 0x000 – 0x7FF

· Length: This is the length you want to read from the eeprom. At most you can read the length of the eeprom 0x800.

By default, when you select “Eeprom” the correct values will be automatically introduced in those fields

If you selected “File”, Pionero will ask the name and file type that’s going to be created (BIN or RCU).

BIN and RCU files have different names and lengths. In reality, the RCU extension is supported just to be backwards compatible with GGF1367. That program uses RCU files read from the start address of the interactive software with 180000 as length. If you choose another address and/or length, use the BIN file type.

If you want to extract absolutely all the flash memory contents, you’ll have to select this addresses and lengths :

	BCT14xx and compatibles
	Contents
	Address
	Length

	
	Interactive Software
	7FE00000
	200000

	
	Channels List
	60000000
	80000

	BCT15xx and compatibles
	Contents
	Address
	Length

	
	Channels List
	7FE00000
	100000

	
	Interactive Software
	60000000
	200000

	BCT16xx and compatibles
	Contents
	Address
	Length

	
	Interactive Software
	7FE00000
	180000

	
	Channels List
	7FF80000
	80000

If you want to read the channels and transponders tables inside the flash you’ll have to select the address where that information is located and 50000 (320Kb) or more as length. Till now, this kind of files had 80000 (512Kb) as length, but reading the flash memory with that length means that you not only read the channels and transponders tables, but also part of the patches received by satellite.

In my opinion, it would be better to read just the channels and transponders tables and not to give out patches (or fractions of patches) that could have undesired effects on other decoders. Anyway, this is jus a personal opinion and Pionero can edit files with more than 320Kb without problems.

You can also read other addresses outside the interactive software and channel list zones. The RAM is located at 40000000 and the Video-RAM is located at C0000000.

The RAM contents change depending on the status on the decoder (service mode or turned on). When the decoder is turned on you can find a copy of the TCS table, a copy of part of the eeprom (at the 401F1B70 address) and the interactive software applications.

On the BCT1430 the channels table is copied to the 40134C40 address but this address changes depending on the firmware used. On my DBR-S100NL2 with the firmware v4.13 from Dynamit that address is 401289A0. To identify the position where that table is located, you have to read all the RAM and search for the name of the first channel (MOSAICO, for example). In some cases the channel name is copied in several locations. The right one is where you can read several channel names separated by some bytes. When you choose the right address, then the address you have to use in Pionero is the address where the “M” is.

The length on the RAM channel table is 7600 if you have a 1000 channel firmware or EC00 if your firmware supports 2000 channels.

Since version 3.0 you can send files to the decoder’s RAM. You just have to select an address, check “File” in the “use” section y click on the “Send” button. Pionero will ask for the name of the file and it will do what’s necessary to send it to that address.

This is the memory map of the bct1430 given by Tomas Vlad :

	EMI configuration registers
	00002000 – 00002FFF

	DCU Registers and memory
	00003000 – 00003FFF

	Peripheral internal space
	20000000 – 3FFFFFFF

	RAM
	40000000 – 401FFFFF

	Flash
	60000000 – 6007FFFF

	Flash
	7FE00000 – 7FFFFFFF

	Sti5510 internal SRAM
	80000000 – 80XXXXXX

	MPEG video RAM
	C0000000 – C0XXXXXX

If you want to read the Video-RAM where the screenshots are held, you can select the addresses C00D0000 or C0168000 and 98000 as length.

How to write with the Jtag interface:

With the Jtag interface you can write in RAM or in the FLASH ICs. The method used to write is radically different so you have to configure Pionero in order to know what method to use. In addition to that, not all Flash ICs are programmed the same way and Pionero must know what kind of Flash IC is used on each address to avoid errors that could leave your decoder “OUT OF ORDER”.

Here is a short list made thanks to some forum members :

	Family
	Board
	Model
	Addresses
	ICs
	Contents

	BCT14xx
	BNP-1323-E/Y
	DBR-S100NL2
	60000000 – 6007FFFF
	M29W400BT
	Channels List

	
	
	
	7FE00000 – 7FFFFFFF
	TC58FVT160FT-10
	Interactive Software

	BCT14xx
	BNP-1323-E/Y
	DBR-S200F
	60000000 – 6007FFFF
	M29W400BT
	Channels List

	
	
	
	7FE00000 – 7FFFFFFF
	TC58FVT160FT-10
	Interactive Software

	BCT14xx
	BNP-1323-C/Y
	BCT-1430
	60000000 – 6007FFFF
	TC58FVT400FT-10
	Channels List

	
	
	
	7FE00000 – 7FFFFFFF
	TC58FVT160FT-10
	Interactive Software

	BCT15xx
	BNP-1354-I
	DBR-S210F
	60000000 – 601FFFFF
	LE28DW1621T-80T
	Interactive Software

	
	
	
	7FE00000 – 7FEFFFFF
	M29W800AT
	Channels List

	BCT15xx
	BNP-1354-F
	DBR-S210F
	60000000 – 601FFFFF
	TC58FVT160FT-10
	Interactive Software

	
	
	
	7FE00000 – 7FEFFFFF
	M29W800AT
	Channels List

	BCT15xx
	BNP-1354-E
	DBR-S210F
	60000000 – 601FFFFF
	TC58FVT160FT-10
	Interactive Software

	
	
	
	7FE00000 – 7FEFFFFF
	M29W800AT
	Channels List

	BCT15xx
	BNP-1354-D
	DBR-S210F
	60000000 – 601FFFFF
	TC58FVT160FT-10
	Interactive Software

	
	
	
	7FE00000 – 7FEFFFFF
	M29W800AT
	Channels List

	BCT15xx
	BNP-1354-G
	DBR-S210I
	60000000 – 601FFFFF
	LE28DW1621T-80T
	Interactive Software

	
	
	
	7FE00000 – 7FEFFFFF
	M29W800AT
	Channels List

	BCT15xx
	BNP-1354-E
	TS-5
	60000000 – 601FFFFF
	TC58FVT160FT-10
	Interactive Software

	
	
	
	7FE00000 – 7FEFFFFF
	M29W800AT
	Channels List

	BCT15xx
	BNP-1354-E
	DBR-S110I
	60000000 – 601FFFFF
	TC58FVT160FT-10
	Interactive Software

	
	
	
	7FE00000 – 7FEFFFFF
	M29W800AT
	Channels List

	BCT15xx
	BNP-1354-D
	DBR-S110I
	60000000 – 601FFFFF
	TC58FVT160FT-10
	Interactive Software

	
	
	
	7FE00000 – 7FEFFFFF
	M29W800AT
	Channels List

	BCT15xx
	BNP-1354-F
	DBR-S110I
	60000000 – 601FFFFF
	TC58FVT160FT-10
	Interactive Software

	
	
	
	7FE00000 – 7FEFFFFF
	M29W800AT
	Channels List

	BCT15xx
	BNP-1354-G
	DBR-S110I
	60000000 – 601FFFFF
	LE28DW1621T-80T
	Interactive Software

	
	
	
	7FE00000 – 7FEFFFFF
	M29W800AT
	Channels List

	BCT15xx
	BNP-1354-G
	DBR-S110NL
	60000000 – 601FFFFF
	LE28DW1621T-80T
	Interactive Software

	
	
	
	7FE00000 – 7FEFFFFF
	M29W800AT
	Channels List

	BCT15xx
	BNP-1354-D
	DBR-S110NL
	60000000 – 601FFFFF
	TC58FVT160FT-10
	Interactive Software

	
	
	
	7FE00000 – 7FEFFFFF
	M29W800AT
	Channels List

	BCT15xx
	BNP-1354-E
	BCT-1510
	60000000 – 601FFFFF
	LE28DW1621T-80T
	Interactive Software

	
	
	
	7FE00000 – 7FEFFFFF
	M29W800AT
	Channels List

	BCT15xx
	BNP-1354-G
	BCT-1510
	60000000 – 601FFFFF
	TC58FVT160FT-10
	Interactive Software

	
	
	
	7FE00000 – 7FEFFFFF
	M29W800AT
	Channels List

	BCT15xx
	BNP-1354-D
	BCT-1510
	60000000 – 601FFFFF
	TC58FVT160FT-10
	Interactive Software

	
	
	
	7FE00000 – 7FEFFFFF
	M29W800AT
	Channels List

	BCT16xx
	BNP-1354-H
	DBR-S120I
	7FE00000 – 7FF7FFFF
	LE28DW1621T-80T
	Interactive Software

	
	
	
	7FF80000 – 7FFFFFFF
	LE28DW1621T-80T
	Channels List

There are many more models but I don’t have the details. If you know the details of another model, send them to me in an e-mail message and I’ll include them in this list.

Pace decoders should use the information of this table :

	PACE Decoders
	Addresses
	Trap Address
	Flash ICs
	Contents

	Pace CP3000P
	7FE00000 - 7FFFFFFF
	C0302900
	AM29LV160BB
	Interactive Software

	Pace CP3000P
	7FE00000 - 7FFFFFFF
	C0302900
	M29W160
	Interactive Software

Before trying to upgrade the firmware you have to select the model and board of your decoder in the “Configuration” section. If you can’t find the exact model and board, you’ll have to select “Customized” as model and board type, then select the Flash ICs type and the Initial address of every Flash IC. For example, for a DBR-S210F you would have select TC58FVT160FT-10 and 600000000 in the “Interactive Software IC” box, and M29W800AT and 7FE00000 in the “Channel list IC” box.

As you can see, the BCT16xx decoders have only one IC where they store all the information. To configure them you have to select the same flash IC type on the Interactive software and Channel list boxes, even the initial addresses must be the same. You’ll only have to select the right address depending on what you want to send with the “Firmware (Jtag)” section.

In the case of Pace decoders, it’s recommended to use the “Customized” setting. Then choose the 7FE00000 address and the right Flash IC type in the interactive software section.

The decoders with Sanyo ICs can select whether to erase blocks (64Kb) or sectors (1Kb) by choosing “LE28DW1621T-80T” or “LE28DW1621T-80T sectors”.

In the “configuration” section you can also select the Trap routine address. You can select any RAM or Video-RAM address but remember that the decoder must not use that address, so if you change it, you should select an address filled with 65Kb of FFs or ceros (Read all the RAM or Video-RAM and look for an address with 65Kb of FFs or ceros). This setting must be selected carefully specially if you are trying to write through the Jtag interface without being in service mode.

This Trap routine is used because it’s not possible to write in the Flash ICs directly through the Jtag interface. It’s necessary to send a small program to the decoder to write and erase those ICs under the command of Pionero. For all that, Pionero needs 65Kb free in your decoder.

I have added a couple of option to be sure that the data is correctly written in the Flash memory. Before writing in a Flash block, Pionero will read it to check if it’s different from what you want to send. Besides that, Pionero will also verify that the data was written correctly. If you have a reliable Jtag interface and you want the maximum speed, you can deactivate these options in the “Configuration” section checking “Force writing in all blocks” and unchecking “Verify flash writing”. If you think that your Jtag interface is the cause of your problems, leave the default values untouched.

I’ve also added an option in the “Configuration” section to generate the firmware checksum automatically when you want to upgrade the firmware of the BCT15xx and BCT16xx decoders. This checksum is applied only to the Interactive Software IC and not to the Channel list IC. In general, you should check this options only if you are sure that the firmware file has a wrong checksum.

After this you have to go back to the “Firmware (Jtag)” section and select the destination address. It’s not necessary to select the length because Pionero will calculate it automatically. In fact, that field is totally ignored.

You’ll also have to select the origin of the data you want to send inside the “Use” section:

· “Flash channel table”: The channels and trandponders lists from the “Tuning” section will be sent.

· “RAM channel table”: The channel list previously read from RAM will be sent. After changing the order of some channels and sending the table back to the RAM, you have to change something in the channels order or erase a channel with the remote control and turn off the decoder with the remote control. If you don’t do this little change with the remote control, the new channel list won’t be stored in flash memory.

· “File”: You’ll have to select a file name to send it to the selected destination address.

· “Screenshot”: If you select this, Pionero won’t send any screenshot. It’s possible to send an screenshot, but that’s something useless...

· “Eeprom” : The values in the eeprom’s section table will be sent. In the “Address” field you’ll have to select an internal eeprom address (0x000-0x7FF) where the data will be sent. The “Length” field will be ignored because it’s calculated automatically.

Lastly, you have to check if the “mi-trap.bin” file exists in the Pionero’s directory, then you can click on “Send” and Pionero will start sending the data to the decoder.

Due to the block design of the Flash ICs, Pionero has to erase, send and verify the data on every block individually.

In the case that Pionero notice that the data of that block is different from what you want to send, that new data will be sent. Afterwards, the data written on that block will be verified and if an error is detected Pionero will ask you whether you want to Ignore it, abort the upgrade or retry to write that block.

If you abort the upgrade, your decoder could show “OUT OF ORDER” or “RETRYING UPDATE” on the display. In that state, your decoder won’t boot but it can be easily fixed using a good Jtag interface. Look for any mistake in your Jtag interface and fix it, then retry to send the firmware. If your Jtag gives just a few sporadic errors, you can retry the upgrade several times till it’s correctly sent.

It’s highly recommended to close all other applications while you upgrade the firmware (screensavers, anti-virus, etc...) because sometimes, depending on the free memory available, your PC will access the hard drive and the transmission synchronization will be lost.

If your computer is too fast and you have problems, you can also try to change the “TCK Length” in the “Configuration” section. If you want to accelerate the transmission you can uncheck the “Verify flash writing”, check “Force writing in all blocks” and chose a smaller “WaitStart bits” number. Remember that you should only do this if your Jtag interface is correctly built.

In some occasions, Pionero can’t detect the channels and transponders tables because of the patches and upgrades that are stored next to them. To fix that problem you can erase that zone of the Flash IC.

On the BCT14xx decoders you can erase the whole Flash IC with the channel list without problems, but in the BCT15xx and BCT16xx decoders you have to be very careful not to erase a special memory address range with code that it’s ABSOLUTELY NECESSARY for the decoder.

BCT15xx :

0x7FE00000 - 0x7FE7FFFF : Patches, upgrades, TPT, TCS, etc...

0x7FE80000 - 0x7FEFFFFF : Boot-loader. (DON’T ERASE!)

BCT16xx :

0x7FF80000 - 0x7FFF7FFF : Patches, upgrades, TPT, TCS, etc...

0x7FFF8000 - 0x7FFFFFFF : Boot-loader. (DON’T ERASE!)

In the Flash IC where the interactive software is stored, there’s also a special memory address range that shouldn’t never be erased.

BCT14xx :

0x7FF80000 - 0x7FFF7FFF : Interactive software.

0x7FFF8000 - 0x7FFFFFFF : Boot-loader. (DON’T ERASE!)

BCT15xx :

0x60000000 - 0x601BFFFF : Interactive software.

0x601C0000 - 0x601FFFFF : Boot-loader. (DON’T ERASE!)

BCT16xx :

0x7FE00000 - 0x7FF3FFFF : Interactive software.

0x7FF40000 - 0x7FF7FFFF : System loader. (DON’T ERASE!)

This is the reason why you shouldn’t try to send files that could write in those positions.

I don’t know of any other addresses that shouldn’t be erased. Remember that this information was obtained thanks to the owners of those decoders and it could be wrong.

You’ll see more clearly this information on this table :

	BCT14xx
	BCT15xx
	BCT16xx

	7FE00000

Interactive Software

7FF7FFFF

7FF80000

Boot Loader

7FFFFFFF

60000000

Channels List

6007FFFF

	60000000

Interactive Software

601BFFFF
601C0000
Boot Loader

601FFFFF
7FE00000
Channels List

7FE7FFFF
7FE80000

Boot Loader

7FEFFFFF

	7FE00000

Interactive Software

7FF3FFFF

7FF40000

System Loader
7FF7FFFF

7FF80000
Channels List
7FFF7FFF

7FFF8000
Boot Loader

7FFFFFFF

How to erase chips with the Jtag interface:

After lots of petitions in the forum, I’ve included an option to erase completely a flash IC through the Jtag.

As you already know, if you erase a position with necessary code, your decoder could end up “dead”. However, in some decoder models those blocks are protected and can’t be erased even if you use that function in Pionero.

After erasing a chip, it’s highly recommended to read it completely to see if those positions were really erased. If so, DON’T TURN YOUR DECODER OFF OR DISCONNECT THE CABLES TILL YOU WRITE INTO THOSE POSITIONS AGAIN!!!!
Besides, Pionero erases each block only when it’s needed before writing on each block. Only in a few cases, when you have problems with your jtag interface, you need to use the “erase chip” function to be sure all the blocks are correctly erased.

If you decide to erase the whole chip and you see that all the blocks where correctly erased, make sure you use a firmware file with the same length as the erased chip capacity.

To erase a chip you have to select its initial address in the “address” ComboBox, then select the erasure method and click on the “Erase Chip” button. The “by blocks” erasure method is the same used when you write on a flash IC and the “Only with one command” method will erase the chip in 10-20 seconds using a single jedec command.

How to upgrade the firmware with the Jtag interface:

These are steps to follow when you want to upgrade your firmware. If you don’t know how to do some of the steps, then you should read the Jtag and eeprom sections again because there’re all the details.

This is just a mini-guide :

1- With the decoder turned off, connect the Jtag interface to the PC and to the decoder.

2- Connect K2002 to ground and while it’s connected, turn on the decoder. “DL1” will appear on the display and then “DL1o”. At that moment you can remove the cable connecting the K2002 point to ground.

3- Select your decoder’s board and model in the “Configuration” section. If it’s not on the list, select “Customized” and configure the Flash ICs manually. The rest of the settings should work with the default values and you should only change them if there’s any problem.

4- Go back to the “Firmware (Jtag)” section and select “File” in the “use” box.

5- Select the initial address of the Flash where your decoder store the Interactive Software. The “Length” field is calculated automatically and you don’t have to fill it.

	Model
	Address

	BCT-14xx
	7FE00000

	BCT-15xx
	60000000

	BCT-16xx
	7FE00000

6- Click on “Send” and select the file name of the new firmware. You’ll see how Pionero checks every block before erasing it and only if it’s different it’ll erase, write and verify that block.

7- When the transmission is finished tyou can turn off the decoder and later, disconnect all the cables.

How to receive and send the channels list with the Jtag interface:

To read the channels list you have to follow these steps :

1- With the decoder turned off, connect the Jtag interface to the PC and to the decoder.

2- Turn the decoder on with the remote control.

3- Now your decoder is not in service mode so you’ll have to use a different trap address. You’ll have to search for an RAM or Video-RAM address (see the memory map given before) where there’s 65Kb free (filled with FFs or ceros). The of the settings should work with the default values and you should only change them if there’s any problem.

4- Select “Eeprom” inthe “use” boxand then click on “Receive”.

5- When that’s finished, Pionero will open the eeprom section where you can store that data. Look at the “Active sections” inside the “Interpreted Data” subsection and the save the eeprom in a file to use it in the future.

6- Go back to the “Firmware (Jtag)” section and select “File” in the “use” box. Select the initial address of the Flash where your decoder store the Channels list. In the “Length” field you should type 50000.

	Model
	Address

	BCT-14xx
	60000000

	BCT-15xx
	7FE00000

	BCT-16xx
	7FF80000

7- Click on “Receive” and Pionero will ask you for the name of the file that’ll be created.

8- When that’s finished, you can go to the “Tuning” section and open the file you just received. If Pionero asks you to select an active section you’ll have to choose the one you saw that was being used in the eeprom. For example, if you see that the active sections in the eeprom are 0 and 2, and then when you open the channels list file Pionero asks you to select one of the tables in these positions 10000, 20000 and 30000, you’ll have to select 20000 and click OK. You have more details about active sections int the “Eeprom” and “Tuning” sections in this manual.

9- Edit the channels and save them in a file.

These are the steps you must follow to send the edited channels list :

1- With the decoder turned off, connect the Jtag interface to the PC and to the decoder.

2- Connect K2002 to ground and while it’s connected, turn on the decoder. “DL1” will appear on the display and then “DL1o”. At that moment you can remove the cable connecting the K2002 point to ground.

3- Select your decoder’s board and model in the “Configuration” section. If it’s not on the list, select “Customized” and configure the Flash ICs manually. The rest of the settings should work with the default values and you should only change them if there’s any problem.

4- Go back to the “Firmware (Jtag)” section and select “File” in the “use” box.

5- Select the initial address of the Flash where your decoder store the Channels List. You don’t have to type anything on the “Length” field because it’s calculated automatically.

	Model
	Address

	BCT-14xx
	60000000

	BCT-15xx
	7FE00000

	BCT-16xx
	7FF80000

6- Click on “Send” and select the file name of the edited channels list.

7- Go back to the “Eerpom” section and click on the “Read file...” button to open the eeprom file that you read before.

8- Go back to the “Firmware (Jtag)” section and select “Eeprom” in the “use”box.

9- Click on “Send” to send the eeprom.

10- When the transmission is finished tyou can turn off the decoder and later, disconnect all the cables.

If you want to send a channels list already opened in the “Tuning” section instead of another list from a file, all you have to do is select “FLASH channel table” in the “use” box. Later, when you click on “Send” Pionero won’t ask you to select any file.

Remember that the active sections in the channels list and in the eeprom must be the same. Read the “Eeprom” and “Tuning” section for more details.

Some firmware have different ways to store the channel and transponder information. For this reason, even if you send the eeprom correctly, the decoder will ask you to store the channel list again. In some cases this can be fixed changing a few bytes in the TCS and TPT headers but in other cases you must copy all the TPT. To avoid these problems you should always use a channel list extracted from the same decoder with the same firmware.

If you have any problem with these guides, read the “Firmware (Jtag)” section in this manual again because there you’ll find how to avoid errors with the Jtag interfaces.

Please, read carefully the information about the memory addresses
that you should NOT erase or write !

TERMINAL SECTION :

In this section you can send any command through the serial port to the decoder. You’ll only have to type the command and then press “Enter” to send it. Have in mind that you have to check the “Add Checksum” option in the configuration. Otherwise, You’ll have to add it for yourself.

In the upper window you can see all the commands sent and received. Even if you are in a different Pionero section (eeprom, firmware) all the traffic of serial commands will be added to this window but without the messages Pionero add to inform you about the status of the transmission. This will be very useful to see if he decoder sends you any unexpected string or to send additional commands if they are necessary in any moment.

In the forum post called “Manual de Modos de Servicio” sent by Jordono to the forum you’ll find much more information to experiment with this section.

These are of the some commands :

- Eeprom writing : %EE=(address)(length)(data)(checksum)

address = 3 nibbles.

length = 2 nibbles. Number of bytes in data

data = values to write in the eeprom

checksum = 2 nibbles. negated XOR of the characters except the %

Decoder’s response : $.D1 means that the last command was successful.

- Eeprom reading : %EE?(address)(length)(checksum)

address = 3 nibbles.

length = 2 nibbles.

checksum = 2 nibbles.

Decoder’s response: $.(length)(data)(checksum)

- Flash writing at 7FE00000 - 7FF7FFFF : %DL=(address)(length)(sum)(checksum)

address = 8 nibbles.

length = 8 nibbles.

sum = 4 nibbles. First add all the bytes of the file and then do a bit wise AND with FFFF.

checksum = 2 nibbles.

Decoder’s response: $.D1 means that the last command was successful and the parallel transmission can start.

- DL command verification : %DL?(checksum)

checksum = 2 nibbles.

Decoder’s response: $.D1 means that the last command was successful and that the data was written correctly.

- Flash writing at 60000000 - 6006FFFF : %FL=(address)(length)(sum)(checksum)

address = 8 nibbles.

length = 8 nibbles.

sum = 4 nibbles.

checksum = 2 nibbles.

Decoder’s response: $.D1 means that the last command was successful and the parallel transmission can start.

- FL command verification : %FL?(checksum)

checksum = 2 nibbles.

Decoder’s response: $.D1 means that the last command was successful and that the data was written correctly.

- Flash writing at 60070000 – 6007FFFF : %PL=(address)(length)(sum)(checksum)

address = 8 nibbles.

length = 8 nibbles.

sum = 4 nibbles.

checksum = 2 nibbles.

Decoder’s response: $.D1 means that the last command was successful and the parallel transmission can start.

- PL command verification : %PL?(checksum)

checksum = 2 nibbles.

Decoder’s response: $.D1 means that the last command was successful and that the data was written correctly.

- Tuner frequency : %TN=(frequency)(band)(checksum)

- Symbol rate : %TB=(symbol-rate-1)(symbol-rate-2)(symbol-rate-3)(symbol-rate-4)(checksum)

- QPSK : %QP=(symbol-rate)(IQ-mode)(RF-switch)(checksum)

- PID : %PI=(v-pid)(a-pid)(p-pid)(checksum)

- Sub Ucom Out : %SO=(port)(checksum)

- Video Processor : %VP=(hsync)(level)(cont)(color)(mute)(brightness)(sync)(checksum)

- Audio Level : %RG=(volume-level)(checksum)

- MPEG Audio Mute : %MA=(mute)(checksum)

- Volume Control : %VL=(level)(checksum)

- Control VCXO : %VX=(level)(checksum)

- GPIO command : %GP=(command)(checksum)

- Modem Reset : %SO=*****************(logic)(checksum)

- Modem command: %AT=(command)(checksum)

- Modem ring : %TX=(command)(checksum)

- LED test : %LE=(command)(checksum)

- Error Rate : %ER=(error-rate)(checksum)

- APR : %AP=(command)(checksum)

- AQTime : %AQ=(aqtime)(aqfrec)(band)(iq-mode)(rf-switch)(v-pid)(a-pid)(p-pid)

(aq-symbol-rate)(symbol-rate-2)(symbol-rate-3)(symbol-rate-4)(checksum)

- Other commands :
%LG?(checksum)

%TN?(checksum)

%FE?(checksum)

%PI?(checksum)

%SO?(checksum)

%SI?(checksum)

%MV?(checksum)

%MA?(checksum)

%VL?(checksum)

%CA?(checksum)

%BK?(checksum)

%RX?(checksum)

%TX?(checksum)

%MD?(checksum)

%AL?(checksum)

%PR?(checksum)

%GP?(checksum)

%AQ?(checksum)

%SF?(checksum)

%MM?(checksum)

%BL=(unknown)(checksum)

%BL?(checksum)

%RL=(unknown)(checksum)

%RL?(checksum)

%BT=(unknown)(checksum)

%BT?(checksum)

%VA?(checksum)

%VB?(checksum)

%LL=(unknown)(checksum) (CAUTION, DELETES FLASH MEMORY!)

%LL?(checksum)

%LE?(checksum)

Most of these commands can be found at the BCT1330 sources but some of them work only on BCT1530 and compatible models. We don’t know whether the meaning of some of these commands have changed from one decoder to another.

In general, the decoder’s response is :

$.D1 if the last command was successful.

$!C0 if the last command was unknown, was written incorrectly or was unsuccessful.

$!DE if the last command was correct but the decoder does not allow it.

If you read the BCT1330 sources you’ll find that if the response’s second character is different than “.”, it means that an error has occurred. Other possible characters in that position are : “!”,”?”,”#”,”@” and “&”

A special case is the “$*C5” response to inform that it is the time to send the %DL? Verification command in the download second phase.

BE CAREFUL WITH THE “%LL” COMMAND !

DELETES A PART OF THE FLASH MEMORY AND

CAN LEAVE YOUR DECODER “OUT OF ORDER”
TUNING SECTION :

Here you can change the channel ordering and modify the parameters needed to tune them.

Before explaining each option I have to clarify some satellite signal reception issues.

Television channels, radio and data are transmitted via satellite through “transponders”, which have a characteristic frequency and polarity. In our case, we are receiving digital information, so what is transmitted is a streams of ones and ceros at great speed.

Thanks to the compression used in this transmission, several video, audio and data channels can be included inside one transponder.

Now you can imagine that the decoder needs to store 2 different lists (tables) with all the information necessary to tune a TV channel inside a transponder. Those lists are called TPT (transponders table) and TCS (Channels table)

This stream of ones and ceros received from one transponder is divided in video, audio and data packets. Each one of those packets is identified by its PID number, and in order to see and to hear a TV channel we’ll need to know which packets to choose to get the correct video and audio. This information is stored in the “Video PID” and “Audio PID” fields inside every row of the channels table. There you’ll also find more fields needed to decrypt encrypted channels (“Audio ECM” and “Video ECM”), the channel name and the transponder used by that channel. The “PCR PID” identifies the packet used to synchronized video and audio. The “Status” field is used to store data that can be modified by the user with the remote control, like choosing the favorite channels, parental blocking and if that channel is active. I don’t know exactly what’s the meaning of “Service ID” but I think it’s an identification number for every video, audio and data channel inside one transponder.

Before explaining the different fields of the transponder table I have to explain how the LNB works.

The LNB is the device located in the antenna focus and it is used by the decoder to receive the information transmitted by the satellite. I won’t give unnecessary details but you need to know that the decoder controls the behavior of the LNB through 22KHz signals and tension changes. Thanks to this the decoder can tune transponders with horizontal and vertical polarities, it can select the frequency bands and it can also select which LNB to use in case there are more than one (DiSEqC).

Inside the transponder table it is stored the tuner frequency and not the real satellite frequency because the LNB cut the frequency down and the decoder only “see” lower frequencies. These frequency changes depend on the LNB and are controlled by the values of “L.O. LNB freq.” In the configuration section.

The other fields are:

1- Transponder ID : Identifies the transponder inside the satellite.

2- Network ID : I think this is used by some providers to identify their transponders.

3- FEC (Forward Error Correction) : Error correction system that adds redundant bytes to the stream.

4- Symbol Rate : Speed at which the symbols are received. On QPSK modulation 1 symbol means 2 bits.

5- Number of channels : Number of channels in that transponder. It doesn’t have to be the same that the number of channels stored in the decoder in that moment.

6- Satellite : Satellite name where that transponder is located. You can change that name in the configuration section.

7- Band : Band used by that transponder.

The decoder could have more than one TCS or TPT. In reality, it only uses one TPT and one TCS, the rest can be erased. This is the reason why Pionero ask you to select one of the TCS or TPT tables when you open a file with a channel list. If the selected table was not the one that the decoder was using, open that file again and select a different TPT or TCS.

In some occasions Pionero finds a TPT or TCS table in a position that’s not the start of an active section. This could be caused by the patches and upgrades that the decoder has stored next to the tables, mixing them in the Flash IC.

To erase them, you should send a file filled with ceros to the initial address of the Flash IC with the channel list. Its length should be:

BCT14xx and BCT15xx : 0x80000

BCT16xx : 0x78000

To change the channels order there are two methods :

1- Clicking over the channel or transponder number and dragging it to the new position. This method can only be used with one channel or transponder at a time because of limitations of the Delphi component that I used.

2- Selecting several channels or transponders and then click on the “Move to” button. This way you can move large amounts of channels or transponders quickly to the position that we choose.

To make easier the ordering of channels, I have added a new section to the left that shows the transponder details of the selected channel. In addition to this, you can maximize the windows to see more channels in one screen.

To select a different row you can click on it with the mouse or press the arrow keys. If you want to select more than one row then you can click on the first row and ,without releasing the mouse button, move it to the last row you want to select. This can also be done with the keyboard pressing the SPACE bar while you move the selected cell with the arrows.

Clicking on “Edit” or double-clicking on a channel or transponder you’ll open a window where you can change all the channel or transponder settings. You’ll also edit the selected row if you press ENTER.

Pressing the numbers from 1 to 6 you can change the encryption system easily with this table :

1- Seca

2- Nagravisión

3- Betacrypt

4- Irdeto

5- Viaccess

6- Don’t change

This information can also be changed editing every channel or in the “Status” box next to the channels table but remember that it will only work if your firmware supports this feature. The rest of the firmwares will ignore this information totally.

The firmware also checks another bit in every channel but the meaning of that bit is unknown. If necessary, you can change it editing a channel.

Clicking on the “Erase” button you’ll remove the selected channel or transponder from the table and by clicking on “Search”, a new window will appear where you can write a name to search for inside the channel table.

If you erase a transponder, all the channels from that transponder will also be erased from the channel table.

Clicking on “Copy” or pressing CONTROL+C you’ll copy the information from the selected rows to the clipboard. On the other hand, if you click on “Paste” or you press CONTROL+V, you’ll paste the information in the clipboard to the selected row position.

Clicking on “Cut” or pressing CONTROL+X you’ll copy and erase the selected rows automatically.

These two option will be very useful for those with the antenna oriented to two satellites. If that’s the case, these are the steps to follow :

1- Store all the channels from the first satellite and read that list through the Jtag interface.

2- Store all the channels from the second satellite and read that list through the Jtag interface.

3- Run Pionero and open the first file.

4- Run a second time Pionero without closing the one you run before and open the second file. At this time you may see a warning message because the second Pionero can’t open the COM port. Just ignore it

5- In that moment you should have two Pioneros running, each one of them with a different channel list. Now you should erase all the unwanted channels from the two lists and after that, you should erase the unnecessary transponders because you erased all their channels.

6- Now you should look at the number of transponders remaining in the first list (let’s say you left 50) and then move ALL the transponder from the second list to the 51st position. By doing this, all the channels in the second list point to the transponder that they’ll have once the two lists are merged!!!

7- Copy all the channels from the second list and paste them to the first list.

8- Copy all the transponders from the second list and paste them at the 51st position in the first list.

9- Save the list as a file and send it to the decoder.

With the “Read File...” and “Save as...” buttons you can open and save the channels and transponders tables in/from our hard disk. Once you open a file you’ll see that video, audio and data channels have different colors.

Another way to merge the information from two different files is to press “Add file...” button after opening another file. Then you’ll have to select the file with the channels and transponders from other satellite to be added at the final table positions.

In some occasions the total number of channels and/or transponders is bigger than the maximum allowed by Pionero’s editor. To avoid that problem you can change the maximum number of channels or transponders at the “Configuration” section. Remember that if the decoder’s firmware doesn’t have support for more than 1000 channels or more than 100 transponders, your decoder will ask you to store the channels again when you turn it on.

Remember that there are two file types: Those read from the Flash memory and those read from the RAM.

Their main difference is the that the files read from the Flash memory have at least one channel table and at least one transponder table. By the contrary, the files read from RAM only have one channel table and no transponders table. Besides that they have different lengths. The first ones have at least 320Kb (50000) and the second ones have always 29,5Kb (7600) of length.

	Type
	TPT
	TCS
	Length

	FLASH
	Yes
	Yes
	> 320Kb

	RAM
	No
	Yes
	29,5Kb

In some occasions, after reading the Flash memory at the address with the TCS and TPT, you’ll see that there’s more than one TCS or TPT. In that case, Pionero will ask which table you want to edit and when you save it, the other tables will be deleted from the new file, leaving just one TCS and one TPT.

After selecting the table you want to edit, all the information will appear to the right and also the sections that are being edited in that moment in the “Active sections” box.

You can also move the tables to another active sections by selecting the new sections in the “Tuning” box, inside the “configuration” tab. The tables will be moved only when you decide to save that file or to send it with the “Firmware (parallel + serial)” tab.

After sending the Flash memory tables you have to update the active section codes in the eeprom. If you don’t do this the decoder will not work because it cannot find the tables. In that case, you can fix the problem by sending the eeprom file well configured.

Lastly, depending on the firmware the decoder is using, the information about the Symbol Rate will be stored in a certain way or another. In the following tables you’ll find the values recognized by Pionero :

	
	22000
	27500

	BCT1430 Polish
	01
	00

	BCT1330 Polish
	01
	02

	BCT1410 Spanish
	00
	02

	BCT1420 Italian
	02
	00

	
	22000
	27500
	27195
	29900
	30000
	28000
	25550
	18056
	20000
	13400
	12130
	13333
	11320

	Dynamit v3.x
	00
	02
	01
	03
	04
	05
	06
	07
	08
	09
	0A
	0B
	0C

	
	22000
	27500
	27195
	29900
	30000
	28000
	25550
	18056
	20000
	27800
	26000
	22500
	24000
	24500
	19540

	Dynamit v4.x
	00
	02
	01
	03
	04
	05
	06
	07
	08
	09
	0A
	0B
	0C
	0D
	0E

	
	22000
	27500
	25550
	20000
	18056
	29900
	28125
	30000

	Dynamit v4.31
	00
	02
	01
	03
	04
	05
	06
	07

Before opening a file with a TPT table you’ll need to know what kind of firmware you’re using and select the right Symbol Rate setting in the “Configuration” tab. I you want to change the way the Symbol Rate is stored, then change that setting and save the file, or send it with the “Firmware (Parallel+serial)” tab.

SCREENSHOT SECTION :

With this section you can see the captured screens from the decoder. If your firmware doesn’t have support for the FREEZE option, you won’t get a clear image.

As Tomas Vlad said, the video RAM is located at the C0000000 address in the BCT14xx decoders. Some BCT15xx owners also could use this feature successfully but I don’t know if the address is same in other models.

The images in that address are in a YUV Planar (4:2:0) format that the ST processors use. In addition to that, these images can be stored in RAM with different resolutions and proportions, depending on the tuned channel.

Pionero can read images with these resolutions: 352x576, 528x576, 544x576, 704x576 and 720x576. From all those resolutions, the most common is the last one and it will be the one that Pionero will use when you want to have an image in 4:3 TV format. If you tune in a 16:9 channel, the image resolution must be changed to 1024x576. All those format changes can be done automatically if you select the right format in the “Configuration” section.

These are the necessary step to see a frozen image from the decoder’s memory :

1- Connect the Jtag interface with the decoder turned OFF.

2- Turn the decoder on, tune in a channel and press the freeze button in the remote control (‘B’ in Dynamit’s firmware v4.13)

3- Run Pionero and go to the “Firmware (Jtag)” section.

4- Select the address C00D0000 and 98000 as length.

5- Check “Screenshot” inside the “use” section and press the “Receive” button.

6- When the transmission is over, Pionero will transform the data into a typical Windows RGB image.

I tried to make this process as fast as possible and I think it could be optimized even more, but for now it’s enough. When the screenshot appears on Pionero, you can press “Save as...” to save the image as a JPEG or a Windows BMP file.

The C0168000 address has another image that can be read with Pionero.

The most frequent error when you receive the images from the decoder is to select a wrong image resolution. In that case, the image will appear broken horizontally in Pionero. To fix this problem you have to select the right image size in the “Configuration” section.

If you don’t like the final image quality when you resize an image in Pionero to change the format, then select “Don’t change the format” in the “Configuration” section. Later you can use a professional photo editing software to resize the image using a better algorithm.

It’s also possible to save the contents of the C00D0000 in a BIN file to make your own tests without receiving that data several times (Check “File” in the “Use” section of “Firmware (Jtag)” whenever you want to do this). Later you can open that file pressing the “Open as...” button in the “Screenshot” section. If you find an image that Pionero can’t handle, send it to me to the e-mail address found at the end of this document.

In the “configuration” section you can also change the JPEG image quality. If you choose 100, you’ll have the best quality but the resulting file will be bigger. However, if you choose 1, the image quality will be very poor but the image size will be smaller.

CONFIGURATION SECTION :

Here you can modify all the Pionero’s configuration. In the “Serial Port” subsection you can test different COM port configurations. For example, the 110 models can connect to the decoder at 19200 bits, 7 , odd and Xon-Xoff.

In the “Tuning” subsection you can modify the high and low local oscillator frequencies of the LNB. You can also choose the way the Symbol Rate is stored in the firmware and the new positions for the TCS and TPT tables. You can also change the name of the satellite that will be shown in the channels and transponders tables, along with the tables’ sizes.

When you choose a Symbol Rate, Pionero will load an INI file with the selected name. The new symbol rates names must be after a free “SR(number)=” in the “Pionero.ini” file. For example, if you want to add a firmware name with new symbol rate values, you have to add this line :

...

SR5=Dynamit v4.x

SR6=firmwarename

SR7=

...

Then you have to create a new file with the name used before (firmwarename.ini) with a section called “firmwarename”. After “value(number)=” you have to add the corresponding values :

[firmwarename]

value00=

value01=22000

value02=27500

value03=

value04=

value05=

value06=

value07=

value08=

value09=

value0A=

value0B=

value0C=

value0D=

value0E=

value0F=

As you can see, the only values you have to fill are the ones you used in that firmware. The rest are left blank. If someone wants more than 16 different symbol rates, please let me know.

Any change in this section will be made when the file is saved or sent through the parallel port.

In the “Terminal” subsection you can activate the option to add checksum automatically on every command and in the “Language” subsection you can choose the Pionero’s interface language.

In this subsection you can add more languages just by modifying the “Pionero.ini” file. The new languages name must be after a free “Idioma(number)=” line. For example, if you want to add a Italian translation :

Idioma0=Español

Idioma1=English

Idioma2=Italiano

Later, you have to create a new file with the same name, which should have a section called the same way as the file. Then translate every sentence in quotation marks:

[Italiano]

traduc0=", codice: "

...

Remember that if the translation is too long it could be cut on the screen.

In the “Parallel Port” subsection you can modify all parameters in the parallel port transmission. I have added this section to experiment new configurations with the BCT1530 model. The rest must leave all values as default.

It would be MUCH BETTER if you read the ieee1284 documentation (ECP specs) before changing anything on this configuration.

This is a small explanation of this subsection :

1- I/O Port Range : Getting this information through API calls or reading the registry is very complicated, so I added this option to enter this value manually. This information is shown in the “resources” tab, inside the parallel port driver properties. If someone knows any way to get this information on any windows version, please tell me.

2- Busy Delay : Pionero waits a few milliseconds till the decoder gives it permission to send the next byte.

3- Strobe Delay: Each time Pionero sends a byte, it must activate the strobe signal a minimal time. This way the decoder notices that there is a new byte on the port. This value must be 0.5 (sec or more but the minimum Windows wait time is 1 millisecond, so I added this delay like GGF1351 or GGF1367 does: with a “for” loop.

4- Negotiation 1 Delay : Delay of event 0 in the ECP specifications.

5- Negotiation 2 Delay : Timeout of event 2 in the ECP specifications.

6- Negotiation 3 Delay : Delay of event 4 in the ECP specifications.

7- Negotiation 4 Delay : Timeout of event 6 in the ECP specifications.

8- Port Opening 1 and 2 Delays : I couldn’t find documentation about this phase but GGF1351 and ggf1367 does it this way.

9- Port Closing 1 Delay : Timeout of event 24 in the ECP specifications.

10- Port Closing 2 Delay : Timeout of event 27 in the ECP specifications.

11- Transm. Start Delay : After the opening and negotiation the file is sent through the parallel port. I have added this delay because the decoder behaves differently with different delay values.

12- Verification Delay: After sending the file through the parallel port Pionero must wait at least 1 second to send the verification command.

13- Delay after each bytes : Optionally you can make the transmission slower adding some delay after each byte.

As you can see in the ECP specs, the Closing 1 and 2 delays are used in the Termination phase. The GGF1351 and GGF1367 execute this phase before and after the transmission. The delays in 3, 4, 7 and 13 the steps of a “for” loop. The rest of the values are just milliseconds.

If you do too many modifications and you don’t know how to go back to the default values, click on the “Default Values” button.

In the Jtag section you can modify the duration of the pulse in the TCK pin, that is, the duration of every transmitted bit. I hope that this will solve the problems in the Jtag interface with fast computers. Remember that this delay is measured in steps of a “for” loop.

In this section you can also select the address where the trap routine is sent, the decoder model and main board type, the Flash ICs type and their initial addresses. In addition to that, you can also deactivate the block check and write verification, and you can also activate the “Add firmware checksum automatically” option.

If you want to add a new Flash IC type you just have to add its name to the first free “FlashIC(number)=” section of “Pionero.ini”. For example, to add a new IC called “Flash-name” :

...

FlashIC3=Toshiba TC58FVT400FT-10

FlashIC4=Sanyo LE28DW1621T-80T

FlashIC5=Flash-Name

...
Later you’ll have to create a new text file called “Flash-Name.ini” that includes “[Flash-Name]” in its first line. The rest of the lines are the base address of each block of that IC and the total number of blocks in the “NumBlocks=” section.

To know the total length of that IC you have to add the base address of the block that would be after the last real block. I know that this sounds confusing but take a look at one of the existing INI IC files and everything will be clear.

You’ll also have to select the erasure mode for that IC in the “ErasureMode=” field. Here you’ll have to write the last byte sent in the block (64Kb) or sector (1Kb) erase JEDEC command. Some manufacturers use the word sector when they mean block, so be careful.

Every decoder model and main board type that can be selected in Pionero can be modified or deleted using INI files. In the “pionero.ini” file there are some lines that start with “Model(number)=” where you can find the model name and the board type of some decoders. Is you want to add more decoders, you just have to add their model name and board type in a free “Model(number)=” line.

...

Model11=BCT-1510, BNP-1354-D

Model12=DBR-S120I, BNP-1354-H

Model13=model-name, board-type

Model14=

...

Then you would have to create an INI file called “model-name, board-type.ini” with “[model-name, board-type]” as the first line. Later you have to add four more lines :

Flash1Start=7FE00000

Flash1Type=2

Flash2Start=60000000

Flash2Type=0
In “Flash1Start” you have to write the initial address of the Flash IC with the interactive software and in “Flash2Start” the initial address of the Flash IC with the Channel list. In “Flash1Type” you have to write the Flash IC type of the Interactive software IC. This is just the number in the “FlashIC(number)=” line. For example, to select “Toshiba TC58FVT400FT-10” as the Channel list IC you should add this line:

Flash2Type=3
In the “Screenshot” section you can change the JPEG image quality, the image size in the decoder’s memory and the final image format.

FINAL NOTES :

This program was created thanks to the knowledge given by many people on the Internet. The real authors of this program are ALL OF US and that’s why I’m giving the source code. If someone wants to make some corrections, modify or add something to Pionero, then he/she only has to send me an e-mail.

Although this program was created using Delphi v5.0, you can also send code in C, C++, Pascal, Java, Visual Basic or pseudo-code.

If you have any doubt about this program, send me a private message to “sa1vador” on http://pub94.ezboard.com/bservihard or send an e-mail message in Spanish, English or Italian to sa1vad0r@hotmail.com

Messages in Italian will be replied in Spanish or English. I’m sorry but I don’t speak Italian although I understand it well enough.

Please, don’t distribute firmware along with this program !

I’m NOT responsible of any damage you cause to your decoder using this program. Remember that I created this program to experiment !!!!

Regards

Sa1vad0r
